Chaoli Zhang | Computer Science | Best Researcher Award

Assist. Prof. Dr ChaoliZhang | Computer Science | Best Researcher Award

Lecturer at Zhejiang Normal University, China

Dr. Chaoli Zhang is a Lecturer at the College of Computer Science and Technology, Zhejiang Normal University . He received his Ph.D. in Computer Science and Technology from Shanghai Jiao Tong Universityย  and has previously worked at Alibaba DAMO Academy as a Senior Engineer . With deep expertise in time series anomaly detection, intelligent systems, and wireless data center networks , he has authored several influential papers in top-tier conferences and journals like IEEE ToN, KDD, and CIKM . He holds multiple patents in AI-driven fault detection and data analysis . Known for blending academic excellence with industrial innovation , he actively contributes to national and provincial-level research projects. His work has earned him prestigious recognitions, including a championship in a global 5G fault localization challenge . Dr. Zhang continues to push the boundaries of AI applications in realworld intelligent systems .

๐Ÿ”นProfessional Profile

GOOGLE SCHOLAR

๐ŸŽ“ Education & Experience

Dr. Zhang obtained his bachelor’s degree in Information Security and Law from Nankai University (2011โ€“2015)ย  and earned his Ph.D. from Shanghai Jiao Tong University (2015โ€“2020) in Computer Science and Technology . After completing his doctorate, he worked from 2020 to 2023 at the Machine Intelligence Lab of Alibaba DAMO Academy , where he led advanced AI projects related to anomaly detection and intelligent monitoring . Since January 2024, he has served as a Lecturer at Zhejiang Normal University, where he continues research in AI and teaches advanced computing topics . His education blends theoretical depth with multidisciplinary training, while his work experience bridges top-tier academia and cutting-edge industry R&D . This combination allows him to explore highly applied, intelligent systems with real-world impact .

๐Ÿ“ˆ Professional Development

Dr. Zhang has demonstrated rapid professional growth through impactful roles in both academia and industry . At Alibaba DAMO Academy, he focused on intelligent systems for real-time anomaly detection in large-scale infrastructure . He has since transitioned into academia, taking a faculty role at Zhejiang Normal University where he now leads funded research projects on smart healthcare analytics and IoT anomaly diagnostics . His professional development is characterized by an emphasis on translational researchโ€”converting algorithms into deployable solutions for real-world systems . As a project leader, he has secured competitive funding from the Zhejiang Natural Science Foundation and municipal science programs . Dr. Zhang regularly presents at global conferences (e.g., KDD, CIKM), reflecting his active engagement with the international research community . With a strong portfolio of publications, patents, and leadership, his professional path exemplifies AI-driven innovation and academic-industrial synergy .

๐Ÿง  Research Focus

Dr. Chaoli Zhang’s research interests lie at the intersection of time series anomaly detection, intelligent computing, and wireless data center networks . He develops novel algorithms for fault root cause analysis, time-frequency decomposition, and multivariate data analysis . His work on models like TFAD and DCdetector introduces advanced methods combining attention mechanisms, contrastive learning, and decomposition techniques for real-time monitoring . His recent projects also explore heterogeneous IoT anomaly detection and healthcare time series analysis, contributing to the development of robust, interpretable, and scalable AI systems . These innovations support applications in smart cities, cloud platforms, and industrial diagnostics โš™๏ธ. With a foundation in graph modeling and deep learning, Dr. Zhangโ€™s research aims to enhance system resilience, operational intelligence, and automation reliability across complex environments .

๐Ÿ… Awards & Honors

Dr. Zhang has earned several notable awards that reflect the excellence and impact of his research work . He was the champion of the 2022 SP Grand Challenge on 5G network fault root cause localization, prevailing over 338 global teams . His practical AI deployment solutions earned him the AAAI/IAAI’23 Deployed Application Innovation Award, one of only 10 globally recognized projects that year . He holds multiple Chinese patents related to time series analysis and cloud-based diagnostic methods ๐Ÿ”ฌ, underscoring his ability to translate theory into tangible technological advances. His papers have been featured in leading journals and conferences, where he served as first or co-first author (IEEE ToN, CIKM, KDD, TCS) . These accolades highlight his cross-domain innovation, commitment to real-world impact, and leadership in the intelligent systems community .

๐Ÿ”นPublication of Top Notes

1.Transformers in Time Series: A Survey

Authors: Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun
Year: 2023
Citations: 1328

2.DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection

Authors: Y. Yang, C. Zhang, T. Zhou, Q. Wen, L. Sun
Year: 2023
Citations: 225

3.Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects

Authors: K. Zhang, Q. Wen, C. Zhang, R. Cai, M. Jin, Y. Liu, J.Y. Zhang, Y. Liang, …
Year: 2024
Citations: 222

4.Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook

Authors: M. Jin, Q. Wen, Y. Liang, C. Zhang, S. Xue, X. Wang, J. Zhang, Y. Wang, …
Year: 2023
Citations: 166

5.ย Large Language Models for Education: A Survey and Outlook

Authors: S. Wang, T. Xu, H. Li, C. Zhang, J. Liang, J. Tang, P.S. Yu, Q. Wen
Year: 2024
Citations: 146

6.TFAD: A Decomposition Time Series Anomaly Detection Architecture with Time-Frequency Analysis

Authors: C. Zhang, T. Zhou, Q. Wen, L. Sun
Year: 2022
Citations: 106

7.A Survey on Diffusion Models for Time Series and Spatio-Temporal Data

Authors: Y. Yang, M. Jin, H. Wen, C. Zhang, Y. Liang, L. Ma, Y. Wang, C. Liu, B. Yang, …
Year: 2024
Citations: 76

8.LogiCoT: Logical Chain-of-Thought Instruction-Tuning

Authors: H. Liu, Z. Teng, L. Cui, C. Zhang, Q. Zhou, Y. Zhang
Year: 2023
Citations: 51

9. Transformers in Time Series: A Survey (arXiv version)

Authors: Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun
Year: 2022
Citations: 45

10. Bringing Generative AI to Adaptive Learning in Education

Authors: H. Li, T. Xu, C. Zhang, E. Chen, J. Liang, X. Fan, H. Li, J. Tang, Q. Wen
Year: 2024
Citations: 43

11.Pricing and Allocation Algorithm Designs in Dynamic Ridesharing System

Authors: C. Zhang, J. Xie, F. Wu, X. Gao, G. Chen
Year: 2020
Citations: 35

12.Transformers in Time Series: A Survey (repeat entry, possibly updated citation)

Authors: Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun
Year: 2023
Citations: 23

13.AHPA: Adaptive Horizontal Pod Autoscaling on Alibaba Cloud Kubernetes

Authors: Z. Zhou, C. Zhang, L. Ma, J. Gu, H. Qian, Q. Wen, L. Sun, P. Li, Z. Tang
Year: 2023
Citations: 22

14.Free Talk in the Air: A Hierarchical Topology for 60 GHz Wireless Data Center Networks

Authors: C. Zhang, F. Wu, X. Gao, G. Chen
Year: 2017
Citations: 19

15.Logical Reasoning in Large Language Models: A Survey

Authors: H. Liu, Z. Fu, M. Ding, R. Ning, C. Zhang, X. Liu, Y. Zhang
Year: 2025
Citations: 14

16.Online Auctions with Dynamic Costs for Ridesharing

Authors:C. Zhang, F. Wu, X. Gao, G. Chen
Year:2017
Citations:14

17.NetRCA: An Effective Network Fault Cause Localization Algorithm

Authors: C. Zhang, Z. Zhou, Y. Zhang, L. Yang, K. He, Q. Wen, L. Sun
Year: 2022
Citations: 13

๐Ÿ“Œ Conclusionย 

Dr. Chaoli Zhang exemplifies the ideal recipient of the Best Researcher Award due to his proven research excellence, industry-validated innovations, and impactful contributions across multiple disciplines. His work seamlessly bridges the gap between theoretical advancements and real-world applications, particularly in artificial intelligence, anomaly detection, and time series analysis. With a strong publication record in top-tier journals and conferences, and recognized achievements such as the SP Grand Challenge 2022 and the AAAI/IAAI Innovation Award, Dr. Zhang has demonstrated both academic depth and practical relevance. His leadership in developing AI-driven solutions for complex, large-scale systems solidifies his standing as one of the top emerging voices in the field. These accomplishments collectively make him exceptionally worthy of recognition as a Best Researcher Award.

Ms. Somaye Mohammadi | Vibration Analysis | Best Researcher Award

Ms. Somaye Mohammadi | Vibration Analysis | Best Researcher Award

Assistant Professor , Sharif University of Technology, Best Researcher Award

Dr. S. Mohammadi is an accomplished mechanical engineer with a strong focus on vibration analysis, acoustics, and machine condition monitoring ๐Ÿ› ๏ธ๐Ÿ”. He earned his Ph.D. from Amirkabir University of Technology, where he specialized in tire/road noise prediction and reduction ๐Ÿ”Š๐Ÿ›ฃ๏ธ. His research spans intelligent fault diagnosis, dynamic balancing, and advanced signal processing ๐Ÿ“Š๐Ÿค–. With a deep commitment to industrial problem-solving and academic excellence, Dr. Mohammadi has published extensively in top-tier journals and conferences ๐Ÿง ๐Ÿ“š. His collaborative work with leading automotive and petrochemical industries demonstrates his practical impact in engineering innovation ๐Ÿš—๐Ÿญ.

Professional Profile

ORCID

Education and Experience

Dr. Mohammadi holds a Ph.D. (2016โ€“2021), M.Sc. (2014โ€“2016), and B.Sc. (2010โ€“2014) in Mechanical Engineering from Amirkabir University of Technology ๐ŸŽ“๐Ÿ‡ฎ๐Ÿ‡ท. His doctoral research focused on modeling and predicting tire/road noise using semi-analytical and statistical methods ๐Ÿ”Š๐Ÿ“ˆ. He has extensive experience in academia and industry, collaborating with IPCO and other companies on dynamic balancing, machine reliability, and condition monitoring โš™๏ธ๐Ÿ—๏ธ. He has published over 25 journal and conference papers and actively participates in technical events and applied engineering research, bridging theory and practice effectively ๐Ÿ“š๐Ÿ› ๏ธ.

Professional Development

Dr. Mohammadi has significantly contributed to professional development in mechanical engineering through active involvement in research, publications, and conferences ๐ŸŽค๐Ÿ“„. He has attended numerous national and international events such as CMFD, ISAV, and IRNDT, presenting cutting-edge research on condition monitoring, acoustic diagnostics, and vibration analysis ๐Ÿ”๐Ÿง . He continuously updates his skills in AI, machine learning, and signal processing for predictive maintenance and fault detection ๐Ÿค–๐Ÿ“Š. His multidisciplinary approach enables practical solutions for complex industrial problems, making him a valuable contributor to academic and engineering communities ๐ŸŒ๐Ÿ”ง.

Research Focus

Dr. Mohammadi’sย  research centers on mechanical vibrations, acoustics, and intelligent fault detection using AI and signal processing ๐Ÿง ๐Ÿ”Š. His work addresses real-world engineering challenges like tire noise reduction, gearbox diagnostics, and turbine reliability โš™๏ธ๐Ÿญ. He combines statistical methods with machine learning to predict failures and optimize performance in rotating machinery, engines, and industrial systems ๐Ÿค–๐Ÿ”ง. His interdisciplinary expertise bridges mechanical design, acoustics, and data analytics to improve machinery health monitoring and performance efficiency ๐Ÿ“‰๐Ÿ“ˆ. His research supports sustainable and cost-effective engineering operations ๐Ÿ”„๐Ÿ’ก.

Awards and Honors

Dr. Mohammadi has received multiple recognitions for his research excellence and technical contributions ๐ŸŽ–๏ธ๐Ÿ“š. He has been invited to present at prestigious conferences like CMFD, ISAV, and IRNDT and collaborated with top engineers and institutions on vibration and fault diagnosis projects ๐Ÿค๐Ÿ”. His publications in high-impact journals such as Applied Acoustics, Journal of Vibration and Control, and Machines have earned critical acclaim from the academic community ๐ŸŒŸ๐Ÿ“ฐ. He was also involved in award-supported industrial collaborations, including projects with IPCO and petrochemical companies, showcasing practical impact and innovation ๐Ÿญ๐Ÿ….

Publication Top Notes

1.๐Ÿ” Intelligent Diagnosis of Rolling Element Bearings Under Various Operating Conditions Using an Enhanced Envelope Technique and Transfer Learning
๐Ÿ“… Published: April 2025 โ€“ Machines

๐Ÿ“Œ DOI: 10.3390/machines13050351

๐Ÿ‘ฅ Co-authors: Ali Davoodabadi, Mehdi Behzad, Hesam Addin Arghand, Len Gelman

๐Ÿง  Key Contribution: Developed an innovative technique combining advanced signal processing (enhanced envelope detection) with transfer learning, significantly improving fault diagnosis accuracy across variable operating conditions in rolling bearings. This paper bridges AI and mechanical reliability โ€“ a cutting-edge intersection in engineering diagnostics.

2.๐Ÿ“Š A Comprehensive Study on Statistical Prediction and Reduction of Tire/Road Noise
๐Ÿ“… Published: October 2022 โ€“ Journal of Vibration and Control

๐Ÿ“Œ DOI: 10.1177/10775463211013184

๐Ÿ‘ฅ Co-authors: Abdolreza Ohadi, Mostafa Irannejad-Parizi

๐Ÿง  Key Contribution: Offers a data-driven, statistical framework for predicting and mitigating tire/road interaction noise, addressing environmental and comfort challenges in vehicle design. The study integrates modeling, statistical methods, and experimental validation, making it valuable for the automotive industry.

3.๐Ÿ”‰ Effect of Modeling Sidewalls on Tire Vibration and Noise

๐Ÿ“… Published: September 2022 โ€“ Journal of Automobile Engineering (IMechE Part D)

๐Ÿ“Œ DOI: 10.1177/09544070211052368

๐Ÿ‘ฅ Co-author: Abdolreza Ohad

๐Ÿง  Key Contribution: Investigated how sidewall modeling precision influences vibrational behavior and noise in tires. The research advanced numerical tire modeling techniques, which are essential for designing quieter, more stable vehicles.

Conclusion

Dr. Mohammadi’s blend of deep theoretical knowledge, strong publication output, practical industrial applications, and multidisciplinary research makes him a standout researcher. His work addresses real-world engineering challenges with smart solutions, reinforcing his eligibility for the Best Researcher Award. He not only contributes to advancing scientific understanding but also to improving industrial reliability and performance โ€” hallmarks of a truly impactful researcher ๐Ÿ…๐Ÿš€.