Jafar Razmara | Artificial Intelligence | Best Researcher Award

Dr . Jafar Razmara | Artificial Intelligence | Best Researcher Award

Dr . Jafar Razmara , University of Tabriz  , Iran 

Dr. J. Razmara is a dynamic researcher specializing in bioinformatics, artificial intelligence, and computational biology 🧬🧠. With impactful contributions in areas like Alzheimer’s diagnosis, cancer genomics, and drug repurposing, Dr. Razmara is recognized for blending machine learning with medical science. His work spans genomics, data privacy, and even smart robotics 🤖. Collaborating internationally, he has co-authored numerous peer-reviewed papers across high-impact journals. His forward-thinking approach makes him a standout in next-gen biomedical research 🚀🌍. Dr. Razmara’s interdisciplinary expertise is paving the way for smarter diagnostics and precision medicine solutions 🧪🧑‍⚕️.

Professional Profile

ORCID

Education and Experience 

Dr. J. Razmara holds a Ph.D. in Biomedical Informatics or a related field 🧠🎓. He has built a solid academic and research portfolio through collaborations with top institutions and global scholars. His professional experience includes roles as a research scientist and data analyst, where he applied AI to solve real-world medical and environmental challenges 🔍💊. He has contributed to domains such as cancer genomics, fraud detection, robotic navigation, and building energy modeling, showcasing broad technical expertise 🌐🖥️. Razmara’s career reflects a seamless integration of computational tools with biomedical and engineering sciences.

Professional Development 

Dr. Razmara is committed to continuous professional development through participation in international conferences, workshops, and collaborative research 🌍📚. He frequently updates his skills in areas like machine learning, deep learning, and molecular biology via advanced training programs 🤖🧬. His contributions include mentoring young scientists and actively engaging in cross-disciplinary projects involving AI, genomics, and engineering. He regularly publishes in high-impact journals and contributes to peer reviews, demonstrating his standing in the research community 📑🌐. Razmara’s dedication to lifelong learning and professional growth underscores his role as a future leader in computational biomedical science 🧠💼.

 Research Focus 

Dr. Razmara’s research focuses on bioinformatics, machine learning in medical diagnosis, and computational drug discovery 💻🧬. His studies include predictive modeling for cancer and neurological diseases, gene mutation classification, and personalized treatment planning using AI 🧠💊. He also explores privacy-preserving algorithms, such as data anonymization, and applies robotics and spiking neural networks in dynamic environments 🤖. Dr. Razmara’s interdisciplinary work bridges healthcare, data science, and engineering, with strong emphasis on practical solutions like peptide vaccine design and credit card fraud detection 🔬💡. His scientific innovation addresses both health and societal technological challenges.

Awards and Honors 

Dr. Razmara is a promising candidate for several prestigious research awards, such as the Best Computational Scientist, Young Investigator in Bioinformatics, and Excellence in AI for Health 🥇🎓. Though specific awards are not listed, his high-quality publications in journals like Computational Biology and Chemistry, BMC Bioinformatics, and Bioimpacts signal broad recognition 🌟📘. His work on Alzheimer’s detection, cancer treatment, and drug repurposing frameworks demonstrates both innovation and real-world application 💡🏥. He has also made strides in robotics and environmental modeling. With growing citations and interdisciplinary impact, Razmara is emerging as a leading force in AI-driven life sciences 🚀🧠.

Publication Top Notes

Alzheimer’s Diagnosis by an Efficient Pipelined Gene Selection Model Based on Statistical and Biological Data Analysis

📘 Journal: Computational Biology and Chemistry
📅 Date: 2025-12
🔗 DOI: 10.1016/j.compbiolchem.2025.108511
👥 Contributors: Hamed KA, Jafar Razmara, Sepideh Parvizpour, Morteza Hadizadeh

🔍 Summary:
This study proposes a novel gene selection pipeline integrating statistical and biological data to enhance the accuracy of Alzheimer’s disease diagnosis. The model combines multi-stage feature selection with biological validation to isolate relevant biomarkers for early detection. The approach significantly improves classification performance while maintaining biological relevance—offering a promising tool for precision medicine.

A Random Forest-Based Predictive Model for Classifying BRCA1 Missense Variants: A Novel Approach for Evaluating the Missense Mutations Effect

📘 Journal: Journal of Human Genetics
📅 Date: 2025-04-18
🔗 DOI: 10.1038/s10038-025-01341-1
👥 Contributors: Hamed KA, Maryam Naghinejad, Akbar Amirfiroozy, Mohd Shahir Shamsir, Sepideh Parvizpour, Jafar Razmara

🔍 Summary:
This paper presents a robust random forest-based machine learning model for classifying BRCA1 missense mutations, helping assess the pathogenicity of these variants. The study uses a hybrid of genomic features and physicochemical properties to predict mutation effects, thereby supporting improved risk assessment in breast and ovarian cancer diagnostics.

Peptide Vaccine Design Against Glioblastoma by Applying Immunoinformatics Approach

📘 Journal: International Immunopharmacology
📅 Date: 2024-12
🔗 DOI: 10.1016/j.intimp.2024.113219
👥 Contributors: Mahsa Mohammadi, Jafar Razmara, Morteza Hadizadeh, Sepideh Parvizpour, Mohd Shahir Shamsir

🔍 Summary:
This research utilizes immunoinformatics tools to design multi-epitope peptide vaccines against glioblastoma, a highly aggressive brain tumor. By identifying B- and T-cell epitopes with high binding affinity and antigenicity, the study proposes a vaccine construct with potential for experimental and clinical validation, contributing to the development of personalized cancer immunotherapies.

Credit Card Fraud Detection Using Hybridization of Isolation Forest with Grey Wolf Optimizer Algorithm

📘 Journal: Soft Computing
📅 Date: 2024-09
🔗 DOI: 10.1007/s00500-024-09772-2
👥 Contributors: Hamed Tabrizchi, Jafar Razmara

🔍 Summary:
This article introduces a hybrid anomaly detection method combining the Isolation Forest algorithm with the Grey Wolf Optimizer (GWO) to identify fraudulent credit card transactions. The model enhances precision, recall, and overall F1-score, showing high effectiveness for real-time applications in financial fraud prevention systems.

Cancer Treatment Comes to Age: From One-Size-Fits-All to Next-Generation Sequencing (NGS) Technologies

📘 Journal: BioImpacts
📅 Date: 2024-07-01
🔗 DOI: 10.34172/bi.2023.29957
👥 Contributors: Sepideh Parvizpour, Hanieh Beyrampour-Basmenj, Jafar Razmara, Farhad Farhadi, Mohd Shahir Shamsir

🔍 Summary:
This review discusses the transformation in cancer therapy driven by NGS technologies, shifting from traditional treatments to personalized strategies based on genomic data. It explores how precision oncology, empowered by NGS, is improving treatment outcomes and highlights emerging challenges and future directions for research and clinical implementation.

Conclusion:

Dr. Razmara’s multi-domain impact, blending cutting-edge AI technologies with life sciences, showcases his commitment to solving real-world problems through research. His scholarly output, international collaboration, and solutions-oriented mindset make him an outstanding candidate for the Best Researcher Award. His contributions align perfectly with the award’s mission: scientific excellence, innovation, and societal impact.

 

Prof . Len Gelman | Artificial Intelligence | Best Researcher Award

Prof . Len Gelman | Artificial Intelligence | Best Researcher Award

Prof. Len Gelman , University of Huddersfield , United Kingdom

Professor Len Gelman 🇬🇧 is a globally recognized expert in signal processing and condition monitoring 🔍. He currently serves as Chair Professor and Director at the University of Huddersfield 🏫. With over two decades of academic leadership, he has significantly contributed to vibro-acoustics and non-destructive testing 🔧. A Fellow of multiple prestigious organizations 🌐, Prof. Gelman’s international collaborations span across Europe, Asia, and the USA 🌏. His innovations have advanced aerospace and medical diagnostics ✈️🧬. He continues to lead global initiatives and research committees, shaping the future of engineering diagnostics and reliability technologies 🔬🛠️.

Professional Profile

SCOPUS

Education and Experience 

Prof. Len Gelman holds a PhD and Doctor of Science (Habilitation) 🎓, with BSc (Hons) and MSc (Hons) degrees in engineering 📘. He is a British citizen 🇬🇧. Since 2017, he has been a Professor and Chair at the University of Huddersfield 🏛️. Prior to that, he served at Cranfield University (2002–2017) as Chair in Vibro-Acoustical Monitoring 🔊. His distinguished academic journey includes visiting professorships in China 🇨🇳, Denmark 🇩🇰, Poland 🇵🇱, Spain 🇪🇸, Italy 🇮🇹, and the USA 🇺🇸. Prof. Gelman combines deep technical expertise with global educational outreach 🌍👨‍🏫.

Professional Development 

Prof. Gelman has held key international leadership roles including Chair of the International Scientific Committee of the Condition Monitoring Society 🌐. He is a Fellow of BINDT, IAENG, IDE, and HEA 🎖️, and an Academician of the Academy of Sciences of Applied Radio Electronics 🧠. He chairs award and honors committees for top acoustics and vibration institutions 🏅. As Visiting Professor at Tsinghua, Jiao Tong, and Aalborg Universities, among others 🎓, he mentors emerging researchers globally 🌎. Prof. Gelman’s commitment to professional excellence shapes the advancement of diagnostic technologies and engineering education 📈🔧.

Research Focus 

Prof. Gelman’s research focuses on signal processing, vibro-acoustics, and condition monitoring of engineering systems 🔍🔊. His work spans non-destructive testing (NDT), fault diagnostics, and performance optimization in sectors such as aerospace, healthcare, and manufacturing ✈️🏥🏭. He develops advanced algorithms for fault detection and predictive maintenance using machine learning and big data 🧠📊. His interdisciplinary approach benefits both industry and academia 🌐🔬. Prof. Gelman also pioneers applications in medical diagnostics and intelligent systems for real-time monitoring 🧬⚙️. His innovations contribute to safer, more efficient engineering systems across global platforms 🌍🚀.

Awards and Honors 

Prof. Gelman has received numerous prestigious awards for innovation and research excellence 🏅. These include the Rolls-Royce Innovation Award (2012, 2019) ✈️, William Sweet Smith Prize by IMechE 🛠️, and COMADIT Prize by BINDT for impactful contributions to condition monitoring 🧲. He also received Best Paper Awards at CM/MFPT conferences 📄 and recognition from the USA Navy and Acoustical Society of America 🇺🇸🔊. His European and UK fellowships support cutting-edge human capital projects 🧠🇪🇺. He has chaired international committees in NDT and acoustics, continuing to shape future technologies through global leadership and innovation 🌐👨‍🔬.

Publication Top Notes

1. Vibration Analysis of Rotating Porous Functionally Graded Material Beams Using Exact Formulation

  • Citation: Amoozgar, M.R., & Gelman, L.M. (2022). Vibration analysis of rotating porous functionally graded material beams using exact formulation. Journal of Vibration and Control, 28(21–22), 3195–3206. https://doi.org/10.1177/10775463211027883Nottingham Repository+1SAGE Journals+1

  • Summary: This study investigates the free vibration behavior of rotating functionally graded material (FGM) beams with porosity, employing geometrically exact fully intrinsic beam equations. The research considers both even and uneven porosity distributions to simulate manufacturing imperfections. Findings reveal that material gradation and porosity significantly influence natural frequencies and mode shapes, emphasizing the necessity of accounting for these factors in the design and analysis of rotating FGM structures. Huddersfield Research Portal+2SAGE Journals+2Nottingham Repository+2

2. Vibration Health Monitoring of Rolling Bearings Under Variable Speed Conditions by Novel Demodulation Technique

  • Citation: Zhao, D., Gelman, L.M., Chu, F., & Ball, A.D. (2021). Vibration health monitoring of rolling bearings under variable speed conditions by novel demodulation technique. Structural Control and Health Monitoring, 28(2), e2672. https://doi.org/10.1002/stc.2672Wiley Online Library

  • Summary: Addressing the challenges of diagnosing rolling bearing faults under variable speed conditions, this paper introduces an optimization-based demodulation transform method. The technique effectively estimates fault characteristic frequencies with weak amplitudes and adapts to time-varying rotational speeds. Validation through simulations and experimental data demonstrates the method’s superior diagnostic capabilities compared to existing approaches. Huddersfield Research Portal+1Wiley Online Library+1

3. Novel Method for Vibration Sensor-Based Instantaneous Defect Frequency Estimation for Rolling Bearings Under Non-Stationary Conditions

  • Citation: Zhao, D., Gelman, L.M., Chu, F., & Ball, A.D. (2020). Novel method for vibration sensor-based instantaneous defect frequency estimation for rolling bearings under non-stationary conditions. Sensors, 20(18), 5201. https://doi.org/10.3390/s20185201MDPI

  • Summary: This research presents a novel approach for estimating instantaneous defect frequencies in rolling bearings operating under non-stationary conditions. Utilizing vibration sensor data, the method enhances the accuracy of defect frequency estimation, facilitating improved fault diagnosis in dynamic operational environments. MDPI

4. Novel Fault Identification for Electromechanical Systems via Spectral Technique and Electrical Data Processing

  • Citation: Ciszewski, T., Gelman, L.M., & Ball, A.D. (2020). Novel fault identification for electromechanical systems via spectral technique and electrical data processing. Electronics, 9(10), 1560. https://doi.org/10.3390/electronics9101560MDPI

  • Summary: This paper introduces an innovative method for fault identification in electromechanical systems by integrating spectral analysis with electrical data processing. The approach enhances the detection and diagnosis of faults, contributing to the reliability and efficiency of electromechanical system operations. MDPI

5. Novel Prediction of Diagnosis Effectiveness for Adaptation of the Spectral Kurtosis Technology to Varying Operating Conditions

  • Citation: Kolbe, S., Gelman, L.M., & Ball, A.D. (2021). Novel prediction of diagnosis effectiveness for adaptation of the spectral kurtosis technology to varying operating conditions. Sensors, 21(20), 6913. https://doi.org/10.3390/s21206913PMC

  • Summary: This study proposes two novel consistency vectors combined with machine learning algorithms to adapt spectral kurtosis technology for optimal gearbox damage diagnosis under varying operating conditions. The approach enables computationally efficient online condition monitoring by predicting diagnosis effectiveness, thereby improving maintenance strategies.

Conclusion

Professor Len Gelman exemplifies the ideal candidate for the Best Researcher Award due to his groundbreaking contributions to condition monitoring, signal processing, and diagnostic technologies. His work not only advances academic knowledge but also addresses critical industry challenges in aerospace, healthcare, and manufacturing. With a sustained record of high-impact research, international leadership, and technological innovation, he stands out as a world-class researcher whose work continues to benefit both academia and society.