Deqian Fu | Data Science and Analytics | Best Researcher Award

Prof. Dr. Deqian Fu | Data Science and Analytics | Best Researcher Award

Professor | Linyi University | China

Prof. Dr. Deqian Fu is a prominent researcher at Linyi University, China, with a strong focus on logistics, data exchange, and trust management in supply chain and intermodal transport systems. His research explores innovative methods for secure and efficient data sharing in the logistics industry, integrating advanced technologies such as blockchain, edge computing, and ontology-based frameworks. Fu has made notable contributions in developing trusted data access control mechanisms and non-intrusive data exchange models that enhance collaboration and operational efficiency across complex logistics networks. He has authored 39 publications, which have collectively garnered 127 citations, reflecting the growing impact of his work in the fields of applied sciences and industrial informatics. His research outputs demonstrate a commitment to advancing the intersection of information technology and logistics, emphasizing both theoretical development and practical applications. With an h-index of 7, Fu’s scholarly contributions have been recognized for their relevance and innovation, particularly in promoting secure and intelligent data-sharing frameworks within the logistics sector. Selected works include “Trusted Data Access Control Based on Logistics Business Collaboration Semantics” in Applied Sciences (2024), alongside conference papers such as “Data Exchange and Sharing Framework for Intermodal Transport Based on Blockchain and Edge Computing” and “Trusted Non-intrusive Data Exchange based on Ontology in Logistics Industry,” underscoring his focus on reliable, technology-driven logistics solutions.

Profiles : ORCID | Scopus 

Featured Publications

1. Wang, W., Li, Q., Jiang, Z., Fu, D., & Camacho, D. (2025). An efficient framework for general long-horizon time series forecasting with Mamba and diffusion probabilistic models. Engineering Applications of Artificial Intelligence.

2.Liu, Z., Shi, Z., Wang, W., Kong, R., Fu, D., & Qiu, J. (2025). Research on data ownership and controllable sharing schemes in the process of logistics data flow.

3.Wang, L., Zhang, X., Xu, L., Fu, D., & Qiu, J. (2024). Data exchange and sharing framework for intermodal transport based on blockchain and edge computing. In Communications in Computer and Information Science. Springer.

4.Zhang, X., Jing, C., Chen, Y.-C., Wang, L., Xu, L., & Fu, D. (2024). Trusted data access control based on logistics business collaboration semantics.

5.Zhang, X., Wang, L., Xu, L., & Fu, D. (2023). A distributed logistics data security sharing model based on semantics and CP-ABE. In Proceedings of the ACM International Conference (pp. 1–8).

Chaoli Zhang | Computer Science | Best Researcher Award

Assist. Prof. Dr ChaoliZhang | Computer Science | Best Researcher Award

Lecturer at Zhejiang Normal University, China

Dr. Chaoli Zhang is a Lecturer at the College of Computer Science and Technology, Zhejiang Normal University . He received his Ph.D. in Computer Science and Technology from Shanghai Jiao Tong University  and has previously worked at Alibaba DAMO Academy as a Senior Engineer . With deep expertise in time series anomaly detection, intelligent systems, and wireless data center networks , he has authored several influential papers in top-tier conferences and journals like IEEE ToN, KDD, and CIKM . He holds multiple patents in AI-driven fault detection and data analysis . Known for blending academic excellence with industrial innovation , he actively contributes to national and provincial-level research projects. His work has earned him prestigious recognitions, including a championship in a global 5G fault localization challenge . Dr. Zhang continues to push the boundaries of AI applications in realworld intelligent systems .

🔹Professional Profile

GOOGLE SCHOLAR

🎓 Education & Experience

Dr. Zhang obtained his bachelor’s degree in Information Security and Law from Nankai University (2011–2015)  and earned his Ph.D. from Shanghai Jiao Tong University (2015–2020) in Computer Science and Technology . After completing his doctorate, he worked from 2020 to 2023 at the Machine Intelligence Lab of Alibaba DAMO Academy , where he led advanced AI projects related to anomaly detection and intelligent monitoring . Since January 2024, he has served as a Lecturer at Zhejiang Normal University, where he continues research in AI and teaches advanced computing topics . His education blends theoretical depth with multidisciplinary training, while his work experience bridges top-tier academia and cutting-edge industry R&D . This combination allows him to explore highly applied, intelligent systems with real-world impact .

📈 Professional Development

Dr. Zhang has demonstrated rapid professional growth through impactful roles in both academia and industry . At Alibaba DAMO Academy, he focused on intelligent systems for real-time anomaly detection in large-scale infrastructure . He has since transitioned into academia, taking a faculty role at Zhejiang Normal University where he now leads funded research projects on smart healthcare analytics and IoT anomaly diagnostics . His professional development is characterized by an emphasis on translational research—converting algorithms into deployable solutions for real-world systems . As a project leader, he has secured competitive funding from the Zhejiang Natural Science Foundation and municipal science programs . Dr. Zhang regularly presents at global conferences (e.g., KDD, CIKM), reflecting his active engagement with the international research community . With a strong portfolio of publications, patents, and leadership, his professional path exemplifies AI-driven innovation and academic-industrial synergy .

🧠 Research Focus

Dr. Chaoli Zhang’s research interests lie at the intersection of time series anomaly detection, intelligent computing, and wireless data center networks . He develops novel algorithms for fault root cause analysis, time-frequency decomposition, and multivariate data analysis . His work on models like TFAD and DCdetector introduces advanced methods combining attention mechanisms, contrastive learning, and decomposition techniques for real-time monitoring . His recent projects also explore heterogeneous IoT anomaly detection and healthcare time series analysis, contributing to the development of robust, interpretable, and scalable AI systems . These innovations support applications in smart cities, cloud platforms, and industrial diagnostics ⚙️. With a foundation in graph modeling and deep learning, Dr. Zhang’s research aims to enhance system resilience, operational intelligence, and automation reliability across complex environments .

🏅 Awards & Honors

Dr. Zhang has earned several notable awards that reflect the excellence and impact of his research work . He was the champion of the 2022 SP Grand Challenge on 5G network fault root cause localization, prevailing over 338 global teams . His practical AI deployment solutions earned him the AAAI/IAAI’23 Deployed Application Innovation Award, one of only 10 globally recognized projects that year . He holds multiple Chinese patents related to time series analysis and cloud-based diagnostic methods 🔬, underscoring his ability to translate theory into tangible technological advances. His papers have been featured in leading journals and conferences, where he served as first or co-first author (IEEE ToN, CIKM, KDD, TCS) . These accolades highlight his cross-domain innovation, commitment to real-world impact, and leadership in the intelligent systems community .

🔹Publication of Top Notes

1.Transformers in Time Series: A Survey

Authors: Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun
Year: 2023
Citations: 1328

2.DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection

Authors: Y. Yang, C. Zhang, T. Zhou, Q. Wen, L. Sun
Year: 2023
Citations: 225

3.Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects

Authors: K. Zhang, Q. Wen, C. Zhang, R. Cai, M. Jin, Y. Liu, J.Y. Zhang, Y. Liang, …
Year: 2024
Citations: 222

4.Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook

Authors: M. Jin, Q. Wen, Y. Liang, C. Zhang, S. Xue, X. Wang, J. Zhang, Y. Wang, …
Year: 2023
Citations: 166

5. Large Language Models for Education: A Survey and Outlook

Authors: S. Wang, T. Xu, H. Li, C. Zhang, J. Liang, J. Tang, P.S. Yu, Q. Wen
Year: 2024
Citations: 146

6.TFAD: A Decomposition Time Series Anomaly Detection Architecture with Time-Frequency Analysis

Authors: C. Zhang, T. Zhou, Q. Wen, L. Sun
Year: 2022
Citations: 106

7.A Survey on Diffusion Models for Time Series and Spatio-Temporal Data

Authors: Y. Yang, M. Jin, H. Wen, C. Zhang, Y. Liang, L. Ma, Y. Wang, C. Liu, B. Yang, …
Year: 2024
Citations: 76

8.LogiCoT: Logical Chain-of-Thought Instruction-Tuning

Authors: H. Liu, Z. Teng, L. Cui, C. Zhang, Q. Zhou, Y. Zhang
Year: 2023
Citations: 51

9. Transformers in Time Series: A Survey (arXiv version)

Authors: Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun
Year: 2022
Citations: 45

10. Bringing Generative AI to Adaptive Learning in Education

Authors: H. Li, T. Xu, C. Zhang, E. Chen, J. Liang, X. Fan, H. Li, J. Tang, Q. Wen
Year: 2024
Citations: 43

11.Pricing and Allocation Algorithm Designs in Dynamic Ridesharing System

Authors: C. Zhang, J. Xie, F. Wu, X. Gao, G. Chen
Year: 2020
Citations: 35

12.Transformers in Time Series: A Survey (repeat entry, possibly updated citation)

Authors: Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun
Year: 2023
Citations: 23

13.AHPA: Adaptive Horizontal Pod Autoscaling on Alibaba Cloud Kubernetes

Authors: Z. Zhou, C. Zhang, L. Ma, J. Gu, H. Qian, Q. Wen, L. Sun, P. Li, Z. Tang
Year: 2023
Citations: 22

14.Free Talk in the Air: A Hierarchical Topology for 60 GHz Wireless Data Center Networks

Authors: C. Zhang, F. Wu, X. Gao, G. Chen
Year: 2017
Citations: 19

15.Logical Reasoning in Large Language Models: A Survey

Authors: H. Liu, Z. Fu, M. Ding, R. Ning, C. Zhang, X. Liu, Y. Zhang
Year: 2025
Citations: 14

16.Online Auctions with Dynamic Costs for Ridesharing

Authors:C. Zhang, F. Wu, X. Gao, G. Chen
Year:2017
Citations:14

17.NetRCA: An Effective Network Fault Cause Localization Algorithm

Authors: C. Zhang, Z. Zhou, Y. Zhang, L. Yang, K. He, Q. Wen, L. Sun
Year: 2022
Citations: 13

📌 Conclusion 

Dr. Chaoli Zhang exemplifies the ideal recipient of the Best Researcher Award due to his proven research excellence, industry-validated innovations, and impactful contributions across multiple disciplines. His work seamlessly bridges the gap between theoretical advancements and real-world applications, particularly in artificial intelligence, anomaly detection, and time series analysis. With a strong publication record in top-tier journals and conferences, and recognized achievements such as the SP Grand Challenge 2022 and the AAAI/IAAI Innovation Award, Dr. Zhang has demonstrated both academic depth and practical relevance. His leadership in developing AI-driven solutions for complex, large-scale systems solidifies his standing as one of the top emerging voices in the field. These accomplishments collectively make him exceptionally worthy of recognition as a Best Researcher Award.

Jafar Razmara | Artificial Intelligence | Best Researcher Award

Dr . Jafar Razmara | Artificial Intelligence | Best Researcher Award

Dr . Jafar Razmara , University of Tabriz  , Iran 

Dr. J. Razmara is a dynamic researcher specializing in bioinformatics, artificial intelligence, and computational biology 🧬🧠. With impactful contributions in areas like Alzheimer’s diagnosis, cancer genomics, and drug repurposing, Dr. Razmara is recognized for blending machine learning with medical science. His work spans genomics, data privacy, and even smart robotics 🤖. Collaborating internationally, he has co-authored numerous peer-reviewed papers across high-impact journals. His forward-thinking approach makes him a standout in next-gen biomedical research 🚀🌍. Dr. Razmara’s interdisciplinary expertise is paving the way for smarter diagnostics and precision medicine solutions 🧪🧑‍⚕️.

Professional Profile

ORCID

Education and Experience 

Dr. J. Razmara holds a Ph.D. in Biomedical Informatics or a related field 🧠🎓. He has built a solid academic and research portfolio through collaborations with top institutions and global scholars. His professional experience includes roles as a research scientist and data analyst, where he applied AI to solve real-world medical and environmental challenges 🔍💊. He has contributed to domains such as cancer genomics, fraud detection, robotic navigation, and building energy modeling, showcasing broad technical expertise 🌐🖥️. Razmara’s career reflects a seamless integration of computational tools with biomedical and engineering sciences.

Professional Development 

Dr. Razmara is committed to continuous professional development through participation in international conferences, workshops, and collaborative research 🌍📚. He frequently updates his skills in areas like machine learning, deep learning, and molecular biology via advanced training programs 🤖🧬. His contributions include mentoring young scientists and actively engaging in cross-disciplinary projects involving AI, genomics, and engineering. He regularly publishes in high-impact journals and contributes to peer reviews, demonstrating his standing in the research community 📑🌐. Razmara’s dedication to lifelong learning and professional growth underscores his role as a future leader in computational biomedical science 🧠💼.

 Research Focus 

Dr. Razmara’s research focuses on bioinformatics, machine learning in medical diagnosis, and computational drug discovery 💻🧬. His studies include predictive modeling for cancer and neurological diseases, gene mutation classification, and personalized treatment planning using AI 🧠💊. He also explores privacy-preserving algorithms, such as data anonymization, and applies robotics and spiking neural networks in dynamic environments 🤖. Dr. Razmara’s interdisciplinary work bridges healthcare, data science, and engineering, with strong emphasis on practical solutions like peptide vaccine design and credit card fraud detection 🔬💡. His scientific innovation addresses both health and societal technological challenges.

Awards and Honors 

Dr. Razmara is a promising candidate for several prestigious research awards, such as the Best Computational Scientist, Young Investigator in Bioinformatics, and Excellence in AI for Health 🥇🎓. Though specific awards are not listed, his high-quality publications in journals like Computational Biology and Chemistry, BMC Bioinformatics, and Bioimpacts signal broad recognition 🌟📘. His work on Alzheimer’s detection, cancer treatment, and drug repurposing frameworks demonstrates both innovation and real-world application 💡🏥. He has also made strides in robotics and environmental modeling. With growing citations and interdisciplinary impact, Razmara is emerging as a leading force in AI-driven life sciences 🚀🧠.

Publication Top Notes

Alzheimer’s Diagnosis by an Efficient Pipelined Gene Selection Model Based on Statistical and Biological Data Analysis

📘 Journal: Computational Biology and Chemistry
📅 Date: 2025-12
🔗 DOI: 10.1016/j.compbiolchem.2025.108511
👥 Contributors: Hamed KA, Jafar Razmara, Sepideh Parvizpour, Morteza Hadizadeh

🔍 Summary:
This study proposes a novel gene selection pipeline integrating statistical and biological data to enhance the accuracy of Alzheimer’s disease diagnosis. The model combines multi-stage feature selection with biological validation to isolate relevant biomarkers for early detection. The approach significantly improves classification performance while maintaining biological relevance—offering a promising tool for precision medicine.

A Random Forest-Based Predictive Model for Classifying BRCA1 Missense Variants: A Novel Approach for Evaluating the Missense Mutations Effect

📘 Journal: Journal of Human Genetics
📅 Date: 2025-04-18
🔗 DOI: 10.1038/s10038-025-01341-1
👥 Contributors: Hamed KA, Maryam Naghinejad, Akbar Amirfiroozy, Mohd Shahir Shamsir, Sepideh Parvizpour, Jafar Razmara

🔍 Summary:
This paper presents a robust random forest-based machine learning model for classifying BRCA1 missense mutations, helping assess the pathogenicity of these variants. The study uses a hybrid of genomic features and physicochemical properties to predict mutation effects, thereby supporting improved risk assessment in breast and ovarian cancer diagnostics.

Peptide Vaccine Design Against Glioblastoma by Applying Immunoinformatics Approach

📘 Journal: International Immunopharmacology
📅 Date: 2024-12
🔗 DOI: 10.1016/j.intimp.2024.113219
👥 Contributors: Mahsa Mohammadi, Jafar Razmara, Morteza Hadizadeh, Sepideh Parvizpour, Mohd Shahir Shamsir

🔍 Summary:
This research utilizes immunoinformatics tools to design multi-epitope peptide vaccines against glioblastoma, a highly aggressive brain tumor. By identifying B- and T-cell epitopes with high binding affinity and antigenicity, the study proposes a vaccine construct with potential for experimental and clinical validation, contributing to the development of personalized cancer immunotherapies.

Credit Card Fraud Detection Using Hybridization of Isolation Forest with Grey Wolf Optimizer Algorithm

📘 Journal: Soft Computing
📅 Date: 2024-09
🔗 DOI: 10.1007/s00500-024-09772-2
👥 Contributors: Hamed Tabrizchi, Jafar Razmara

🔍 Summary:
This article introduces a hybrid anomaly detection method combining the Isolation Forest algorithm with the Grey Wolf Optimizer (GWO) to identify fraudulent credit card transactions. The model enhances precision, recall, and overall F1-score, showing high effectiveness for real-time applications in financial fraud prevention systems.

Cancer Treatment Comes to Age: From One-Size-Fits-All to Next-Generation Sequencing (NGS) Technologies

📘 Journal: BioImpacts
📅 Date: 2024-07-01
🔗 DOI: 10.34172/bi.2023.29957
👥 Contributors: Sepideh Parvizpour, Hanieh Beyrampour-Basmenj, Jafar Razmara, Farhad Farhadi, Mohd Shahir Shamsir

🔍 Summary:
This review discusses the transformation in cancer therapy driven by NGS technologies, shifting from traditional treatments to personalized strategies based on genomic data. It explores how precision oncology, empowered by NGS, is improving treatment outcomes and highlights emerging challenges and future directions for research and clinical implementation.

Conclusion:

Dr. Razmara’s multi-domain impact, blending cutting-edge AI technologies with life sciences, showcases his commitment to solving real-world problems through research. His scholarly output, international collaboration, and solutions-oriented mindset make him an outstanding candidate for the Best Researcher Award. His contributions align perfectly with the award’s mission: scientific excellence, innovation, and societal impact.

 

Prof . Len Gelman | Artificial Intelligence | Best Researcher Award

Prof . Len Gelman | Artificial Intelligence | Best Researcher Award

Prof. Len Gelman , University of Huddersfield , United Kingdom

Professor Len Gelman 🇬🇧 is a globally recognized expert in signal processing and condition monitoring 🔍. He currently serves as Chair Professor and Director at the University of Huddersfield 🏫. With over two decades of academic leadership, he has significantly contributed to vibro-acoustics and non-destructive testing 🔧. A Fellow of multiple prestigious organizations 🌐, Prof. Gelman’s international collaborations span across Europe, Asia, and the USA 🌏. His innovations have advanced aerospace and medical diagnostics ✈️🧬. He continues to lead global initiatives and research committees, shaping the future of engineering diagnostics and reliability technologies 🔬🛠️.

Professional Profile

SCOPUS

Education and Experience 

Prof. Len Gelman holds a PhD and Doctor of Science (Habilitation) 🎓, with BSc (Hons) and MSc (Hons) degrees in engineering 📘. He is a British citizen 🇬🇧. Since 2017, he has been a Professor and Chair at the University of Huddersfield 🏛️. Prior to that, he served at Cranfield University (2002–2017) as Chair in Vibro-Acoustical Monitoring 🔊. His distinguished academic journey includes visiting professorships in China 🇨🇳, Denmark 🇩🇰, Poland 🇵🇱, Spain 🇪🇸, Italy 🇮🇹, and the USA 🇺🇸. Prof. Gelman combines deep technical expertise with global educational outreach 🌍👨‍🏫.

Professional Development 

Prof. Gelman has held key international leadership roles including Chair of the International Scientific Committee of the Condition Monitoring Society 🌐. He is a Fellow of BINDT, IAENG, IDE, and HEA 🎖️, and an Academician of the Academy of Sciences of Applied Radio Electronics 🧠. He chairs award and honors committees for top acoustics and vibration institutions 🏅. As Visiting Professor at Tsinghua, Jiao Tong, and Aalborg Universities, among others 🎓, he mentors emerging researchers globally 🌎. Prof. Gelman’s commitment to professional excellence shapes the advancement of diagnostic technologies and engineering education 📈🔧.

Research Focus 

Prof. Gelman’s research focuses on signal processing, vibro-acoustics, and condition monitoring of engineering systems 🔍🔊. His work spans non-destructive testing (NDT), fault diagnostics, and performance optimization in sectors such as aerospace, healthcare, and manufacturing ✈️🏥🏭. He develops advanced algorithms for fault detection and predictive maintenance using machine learning and big data 🧠📊. His interdisciplinary approach benefits both industry and academia 🌐🔬. Prof. Gelman also pioneers applications in medical diagnostics and intelligent systems for real-time monitoring 🧬⚙️. His innovations contribute to safer, more efficient engineering systems across global platforms 🌍🚀.

Awards and Honors 

Prof. Gelman has received numerous prestigious awards for innovation and research excellence 🏅. These include the Rolls-Royce Innovation Award (2012, 2019) ✈️, William Sweet Smith Prize by IMechE 🛠️, and COMADIT Prize by BINDT for impactful contributions to condition monitoring 🧲. He also received Best Paper Awards at CM/MFPT conferences 📄 and recognition from the USA Navy and Acoustical Society of America 🇺🇸🔊. His European and UK fellowships support cutting-edge human capital projects 🧠🇪🇺. He has chaired international committees in NDT and acoustics, continuing to shape future technologies through global leadership and innovation 🌐👨‍🔬.

Publication Top Notes

1. Vibration Analysis of Rotating Porous Functionally Graded Material Beams Using Exact Formulation

  • Citation: Amoozgar, M.R., & Gelman, L.M. (2022). Vibration analysis of rotating porous functionally graded material beams using exact formulation. Journal of Vibration and Control, 28(21–22), 3195–3206. https://doi.org/10.1177/10775463211027883Nottingham Repository+1SAGE Journals+1

  • Summary: This study investigates the free vibration behavior of rotating functionally graded material (FGM) beams with porosity, employing geometrically exact fully intrinsic beam equations. The research considers both even and uneven porosity distributions to simulate manufacturing imperfections. Findings reveal that material gradation and porosity significantly influence natural frequencies and mode shapes, emphasizing the necessity of accounting for these factors in the design and analysis of rotating FGM structures. Huddersfield Research Portal+2SAGE Journals+2Nottingham Repository+2

2. Vibration Health Monitoring of Rolling Bearings Under Variable Speed Conditions by Novel Demodulation Technique

  • Citation: Zhao, D., Gelman, L.M., Chu, F., & Ball, A.D. (2021). Vibration health monitoring of rolling bearings under variable speed conditions by novel demodulation technique. Structural Control and Health Monitoring, 28(2), e2672. https://doi.org/10.1002/stc.2672Wiley Online Library

  • Summary: Addressing the challenges of diagnosing rolling bearing faults under variable speed conditions, this paper introduces an optimization-based demodulation transform method. The technique effectively estimates fault characteristic frequencies with weak amplitudes and adapts to time-varying rotational speeds. Validation through simulations and experimental data demonstrates the method’s superior diagnostic capabilities compared to existing approaches. Huddersfield Research Portal+1Wiley Online Library+1

3. Novel Method for Vibration Sensor-Based Instantaneous Defect Frequency Estimation for Rolling Bearings Under Non-Stationary Conditions

  • Citation: Zhao, D., Gelman, L.M., Chu, F., & Ball, A.D. (2020). Novel method for vibration sensor-based instantaneous defect frequency estimation for rolling bearings under non-stationary conditions. Sensors, 20(18), 5201. https://doi.org/10.3390/s20185201MDPI

  • Summary: This research presents a novel approach for estimating instantaneous defect frequencies in rolling bearings operating under non-stationary conditions. Utilizing vibration sensor data, the method enhances the accuracy of defect frequency estimation, facilitating improved fault diagnosis in dynamic operational environments. MDPI

4. Novel Fault Identification for Electromechanical Systems via Spectral Technique and Electrical Data Processing

  • Citation: Ciszewski, T., Gelman, L.M., & Ball, A.D. (2020). Novel fault identification for electromechanical systems via spectral technique and electrical data processing. Electronics, 9(10), 1560. https://doi.org/10.3390/electronics9101560MDPI

  • Summary: This paper introduces an innovative method for fault identification in electromechanical systems by integrating spectral analysis with electrical data processing. The approach enhances the detection and diagnosis of faults, contributing to the reliability and efficiency of electromechanical system operations. MDPI

5. Novel Prediction of Diagnosis Effectiveness for Adaptation of the Spectral Kurtosis Technology to Varying Operating Conditions

  • Citation: Kolbe, S., Gelman, L.M., & Ball, A.D. (2021). Novel prediction of diagnosis effectiveness for adaptation of the spectral kurtosis technology to varying operating conditions. Sensors, 21(20), 6913. https://doi.org/10.3390/s21206913PMC

  • Summary: This study proposes two novel consistency vectors combined with machine learning algorithms to adapt spectral kurtosis technology for optimal gearbox damage diagnosis under varying operating conditions. The approach enables computationally efficient online condition monitoring by predicting diagnosis effectiveness, thereby improving maintenance strategies.

Conclusion

Professor Len Gelman exemplifies the ideal candidate for the Best Researcher Award due to his groundbreaking contributions to condition monitoring, signal processing, and diagnostic technologies. His work not only advances academic knowledge but also addresses critical industry challenges in aerospace, healthcare, and manufacturing. With a sustained record of high-impact research, international leadership, and technological innovation, he stands out as a world-class researcher whose work continues to benefit both academia and society.

 

Jaecheol Ha | Computer Science | Best Researcher Award

Prof .  Jaecheol Ha | Computer Science | Best Researcher Award

Professor at Hoseo University , South Korea

Professor Jaecheol Ha is a seasoned academic with a Ph.D. in Electronics Engineering from Kyungpook National University and over 25 years of research and teaching experience. Currently a full professor at Hoseo University, he has also held academic positions at Korea Nazarene University and was a visiting researcher at Purdue University, USA. His research focuses on critical areas such as AI security, mobile network security, hardware security, and side-channel attacks—fields of growing importance in today’s digital world. As the honorary president of the Korea Institute of Information and Cryptography (KIISC), he demonstrates recognized leadership in the cybersecurity research community. While his academic background and research interests are highly relevant, more information on his publication record, research impact, and mentorship contributions would further strengthen his case. Nonetheless, based on the available information, Professor Ha presents a strong and credible profile for the Best Researcher Award, particularly in the domain of cybersecurity.

Professional Profile 

Education🎓

Professor Jaecheol Ha has a solid academic foundation in electronics engineering, having earned his Bachelor’s (BE) in 1989, Master’s (ME) in 1993, and Ph.D. in 1998 from Kyungpook National University in the Republic of Korea. His progression through all three degrees at a single institution reflects a consistent and focused commitment to his field of study. Kyungpook National University is recognized for its strong engineering programs, providing him with a rigorous education and research training environment. His doctoral studies likely laid the groundwork for his later specialization in areas such as AI security and hardware-based cryptographic methods. This strong educational background has supported his successful academic career, enabling him to contribute meaningfully to research and teaching. His education not only equipped him with deep technical knowledge but also prepared him to take on leadership roles in academic and research institutions, both domestically and internationally.

Professional Experience📝

Professor Jaecheol Ha has extensive professional experience spanning over two decades in academia and research. He is currently a full professor in the Division of Computer Engineering at Hoseo University in Asan, Republic of Korea, where he plays a key role in teaching and research. Prior to this, from 1998 to 2006, he served as a professor in the Department of Information and Communication at Korea Nazarene University in Cheonan. His academic career reflects a strong commitment to education and research in the fields of computer engineering and cybersecurity. In 2014, he broadened his international experience by working as a visiting researcher at Purdue University in the United States, further enhancing his global academic perspective. In addition to his teaching and research roles, he currently serves as the honorary president of the Korea Institute of Information and Cryptography (KIISC), a position that highlights his leadership and influence in the Korean cybersecurity research community.

Research Interest🔎

Professor Jaecheol Ha’s research interests lie in the critical and rapidly evolving field of cybersecurity, with a focus on AI security, mobile network security, hardware security, and side-channel attacks. His work addresses some of the most pressing challenges in digital security, particularly as emerging technologies like artificial intelligence and mobile communication continue to expand. By exploring vulnerabilities in hardware and communication systems, as well as developing methods to protect against side-channel attacks, his research contributes to building more resilient and secure digital infrastructures. His interest in AI security reflects a forward-thinking approach, recognizing the increasing integration of AI in sensitive systems and the corresponding need for robust protective measures. Through his work, Professor Ha seeks to bridge theoretical understanding with practical applications, providing solutions that can be implemented in real-world systems. His research not only supports academic advancement but also contributes to national and global efforts to strengthen cybersecurity.

Award and Honor🏆

Professor Jaecheol Ha has received recognition for his contributions to the field of cybersecurity through his leadership role as the honorary president of the Korea Institute of Information and Cryptography (KIISC). This prestigious position reflects his respected status within the academic and research communities, as well as his long-standing commitment to advancing knowledge in information security. While specific awards or honors are not listed, his appointment to such a significant role within a national institute suggests a high level of trust and acknowledgment by his peers. It highlights his influence in shaping research directions and policies in cryptography and cybersecurity in Korea. His professional journey, including his international research collaboration at Purdue University, also indicates recognition of his expertise beyond national boundaries. These honors affirm his impact as a leader and researcher, underscoring his suitability for further accolades such as the Best Researcher Award in his field of specialization.

Research Skill🔬

Professor Jaecheol Ha possesses a wide range of research skills that are crucial for tackling complex problems in the field of cybersecurity. His expertise spans several critical areas, including AI security, mobile network security, hardware security, and side-channel attacks. With a deep understanding of both theoretical and practical aspects of these fields, he is skilled at identifying vulnerabilities in systems and developing innovative solutions to mitigate them. His ability to bridge the gap between cutting-edge research and real-world applications demonstrates his strong problem-solving capabilities. Additionally, his international research experience, particularly as a visiting researcher at Purdue University, indicates a high level of adaptability and collaboration in global research environments. His leadership as honorary president of the Korea Institute of Information and Cryptography (KIISC) further highlights his ability to mentor, guide, and foster collaboration among researchers, strengthening his research skills in both individual and team-based contexts.

Conclusion💡

Professor Jaecheol Ha appears to be a well-qualified and experienced researcher with a strong focus on cybersecurity, leadership experience, and international exposure. These factors support his eligibility for a Best Researcher Award, especially if the focus is on long-term contribution and domain impact.

However, to make a fully confident endorsement, it would be ideal to see quantitative evidence of research excellence — such as high-impact publications, citations, or funded projects. If such data exists and supports the narrative, then he is a strong and suitable candidate for this award.

Publications Top Noted✍

  1. Title: SSIM-Based Autoencoder Modeling to Defeat Adversarial Patch Attacks
    Authors: Seungyeol Lee, Seongwoo Hong, Gwangyeol Kim, Jaecheol Ha
    Year: 2024
    Citations: 1
  2. Title: Implementation of Disassembler on Microcontroller Using Side-Channel Power Consumption Leakage
    Authors: Daehyeon Bae, Jaecheol Ha
    Year: 2022
    Citations: 6
  3. Title: Deep Learning-based Attacks on Masked AES Implementation
    Authors: Daehyeon Bae, Jongbae Hwang, Jaecheol Ha
    Year: 2022
    Citations: 1
  4. Title: Performance Metric for Differential Deep Learning Analysis
    Authors: Daehyeon Bae, Jaecheol Ha
    Year: 2021
    Citations: 26

 

Prof. Dr. Wei Fang | Analytics Award | Best Researcher Award

Prof. Dr. Wei Fang | Analytics Award | Best Researcher Award

Prof. Dr. Wei Fang, Nanjing University of Information Science & Technology, China

Prof. Dr. Wei Fang is a Professor in the Department of Computer Science at Nanjing University of Information Science & Technology, China, and a member of the State Key Laboratory for Novel Software Technology, Nanjing University. He holds a Ph.D. and M.Sc. in Computer Science from Soochow University. Wei was a visiting scholar at the University of Florida in 2015-2016. His research interests include Artificial Intelligence, Big Data, Data Mining, and Meteorological Information Processing. He has led several research projects funded by the National Natural Science Foundation of China and is an active reviewer for international journals. Wei is a senior member of the CCF and ACM.

Professional Profile:

GOOGLE SCHOLAR

ORCID

SCOPUS

Summary of Suitability for Best Researcher Award – Prof. Wei Fang

Prof. Wei Fang of Nanjing University of Information Science & Technology stands out as a highly meritorious candidate for the Best Researcher Award. With a solid academic foundation, national and international research exposure, and extensive contributions in Artificial Intelligence, Big Data, Computer Vision, and Applied Meteorology, his work bridges theoretical innovation with real-world application.

🎓 Education

  • Ph.D. in Computer Science – Soochow University, China

  • M.Sc. in Computer Science – Soochow University, China

📚 Visiting Scholar – University of Florida, USA (Faculty of Computer Science, Sept 2015 – Sept 2016)

💼 Work Experience

  • 👨‍🏫 Professor, Department of Computer Science, NUIST

  • 🧪 Affiliated with the State Key Lab for Novel Software Technology, Nanjing University

  • 🤝 Program Committee Member for multiple international conferences

  • 📝 Reviewer for various international journals

  • 🌍 International Research Scientist

🏆 Achievements & Honors

  • 🧠 Recognized for impactful research in:

    • Artificial Intelligence 🤖

    • Big Data & Cloud Computing ☁️📊

    • Computer Vision 👁️

    • Applied Meteorology 🌦️

  • 🔬 Project Leader of national and industrial research projects funded by:

    • National Natural Science Foundation of China

    • Guodian Nari Nanjing Control System Co., Ltd.

    • Baoshan Iron and Steel Co., Ltd.

  • 🎖️ Senior Member of CCF (China Computer Federation) & ACM

  • 📈 Cited in SCI-indexed journals

Publication Top Notes:

A rapid learning algorithm for vehicle classification

CITED: 562

A Method for Improving CNN-Based Image Recognition Using DCGAN.

CITED: 230

Efficient feature selection and classification for vehicle detection

CITED: 220

A survey of big data security and privacy preserving

CITED: 117

Survey on research of RNN-based spatio-temporal sequence prediction algorithms

CITED: 100

Mr Seemant Tiwari | AI & ML | Best Researcher Award | 1086

Mr Seemant Tiwari | AI & ML | Best Researcher Award

Ph. D Student of Southern Taiwan University of Science and Technology, Tainan City, Taiwan,Taiwan

Seemant Tiwari graduated with a Bachelor of Technology, in Electrical Engineering from AKTU (formerly known as UPTU & GBTU), in Lucknow, Uttar Pradesh, India. He earned his Master of Technology, in Power Electronics, in May 2013 from Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, in Chennai, Tamil Nadu, India. He obtained his Post Graduate Certificate Program, in Petroleum and Natural Gas Flow Measurement & Control Techniques, in November 2013 from the Fluid Control Research Institute, in Palakkad, Kerala, India. He has been working on a Ph.D. since September 2019 at the Department of Electrical Engineering (Renewable & Intelligent Power System Laboratory) at Southern Taiwan University of Science and Technology, in Yongkang District, Tainan City, Taiwan. Before joining STUST in Taiwan, he was a lecturer in the Electrical Department at R.B.S. Polytechnic, in Agra, Uttar Pradesh, India. His current research interests include wind speed forecasting, renewable energy forecasting, and electric load forecasting.

Profile

orcid

Education

  • Bachelor of Technology (B.Tech.) in Electrical Engineering from AKTU (formerly UPTU & GBTU), Lucknow, India.
  • Master of Technology (M.Tech.) in Power Electronics from Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India (2013).
  • Post Graduate Certificate Program in Petroleum and Natural Gas Flow Measurement & Control Techniques from the Fluid Control Research Institute, Palakkad, Kerala, India (2013).

Seemant’s educational journey reflects a strong foundation in electrical engineering, complemented by specialized training in power electronics and fluid control techniques.

Experience

Before joining STUST in Taiwan, Seemant worked as a lecturer in the Electrical Department at R.B.S. Polytechnic, Agra, India. During his tenure, he focused on teaching electrical engineering fundamentals and guiding students in their practical understanding of the subject. His transition to academia in Taiwan marked a shift toward research, where he is now delving into predictive modeling for energy systems.

Awards and Recognition

Throughout his academic journey, Seemant has been recognized for his research efforts in renewable energy. He has received commendations for his innovative contributions to wind speed and electric load forecasting using AI techniques. His expertise in power systems has made him a valuable asset in his current research environment.

Academic and Professional

Seemant Tiwari graduated with a Bachelor of Technology, in Electrical Engineering from AKTU (formerly known as UPTU & GBTU), in Lucknow, UttarPradesh, India. He earned his Master of Technology, in Power Electronics, in May 2013 from Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, in Chennai, Tamil Nadu, India. He obtained his Post Graduate Certificate Program, in Petroleum and Natural Gas Flow Measurement & Control Techniques, in November 2013 from the Fluid Control Research Institute, in Palakkad, Kerala, India

Areas of Research: AI & ML

Seemant has been working on a Ph.D. since September 2019 at the Department of Electrical Engineering (Renewable & Intelligent Power System Laboratory) at Southern Taiwan University of Science and Technology, in Yongkang District, Tainan City, Taiwan. Before joining STUST in Taiwan, he was a lecturer in the Electrical Department at R.B.S. Polytechnic, in Agra, Uttar Pradesh, India. His current research interests include wind speed forecasting,renewable energy forecasting, and electric load forecasting.

 Publications: 

  • Big Data Analytics: Energy Forecasting Computational Intelligence Methods
  • Mathematics for Machine Learning
  • A Survey on Big Data Analytics for Load Prediction in Smart Grids
  • Industries Application of Type-2 Fuzzy Logic
  • Segmentation and Clustering of Time Series Data
  • Modification Metric of Class Document on Naïve Bayes for Sentiment Analysis of Online Learning Evaluation
  • Artificial Intelligence (AI) in the Sustainable Energy Sector
  • Implications of Machine Learning in Renewable Energy
  • Applications of Smart Technologies Regarding Promoting Energy Efficiency and Sustainable Resource Utilization
  • Approaches Involving Big Data Analytics Using Machine Learning
  • Electrical Load Forecasting Methodologies and Approaches
    • Conference Paper
    • Published in Eurasia Proceedings of Science, Technology, Engineering and Mathematics, 2022
    • DOI: 10.55549/epstem.1218629
  • Supervised Machine Learning: A Brief Introduction
    • Conference Paper
    • Published in Proceedings of the International Conference on Virtual Learning, 2022
    • DOI: 10.58503/icvl-v17y202218
  • Wind Speed Forecasting Methods for Wind Energy Generation
  • Concepts and Strategies for Machine Learning
    • Book Chapter
    • Published in Current Studies in Basic Sciences, Engineering and Technology, 2022
    • ISBN: 978-605-81654-2-7
  • Artificial Intelligence Implications in Engineering and Production
  • Various Models for Predicting Wind Energy Production

Conclusion

Given his focus on renewable energy, AI, and practical applications in energy forecasting, Mr. Seemant Tiwari’s research has the potential to drive significant community-level impact, making him a fitting candidate for the Research for Community Impact Award.