Weiyu Wang | Electrical Engineering | Best Researcher Award

Assoc. Prof. Dr. Weiyu Wang | Electrical Engineering | Best Researcher Award

Associate Professor at Changsha University of Science and Technology, China

Dr. Weiyu Wang is an accomplished Associate Professor at the School of Electrical and Information Engineering, Changsha University of Science and Technology, China. He earned his B.S. and Ph.D. degrees in Electrical and Information Engineering from Hunan University, respectively.  He was a Visiting Researcher at the University of Liverpool, U.K., enhancing his expertise in advanced power system stability and control. Since joining CSUST, Dr. Wang has led multiple national and provincial research projects focused on hybrid AC/DC power systems, HVDC technology, and renewable energy integration. and SCI-indexed journal publications, he is a rising figure in the field of electrical power engineering. Recognized as an Outstanding Reviewer by IEEE Transactions on Power Systems in , he continues to advance innovative solutions for modern energy systems.

Professional Profile

ORCID Profile | Google Scholar

Education

Dr. Weiyu Wang  academic journey  is marked by excellence in electrical and information engineering. He obtained his Bachelor of Science degree from Hunan University , where he developed a strong foundation in power systems, electronics, and control theory.  Driven by a passion for advanced research, he continued at Hunan University to pursue his Ph.D. in Electrical and Information Engineering, which he completed in . His doctoral research focused on stability analysis and control of hybrid AC/DC power systems, a cutting-edge area crucial for integrating renewable energy into modern grids. During his Ph.D., he broadened his academic horizon as a Visiting Researcher at the University of Liverpool, U.K, engaging in collaborative international research on oscillation control and HVDC systems.  This diverse educational background provided him with both deep technical knowledge and global perspectives, shaping his expertise in power system innovation.

Experience 

Dr. Weiyu Wang  began his academic career in  as a Lecturer at the School of Electrical and Information Engineering, Changsha University of Science and Technology (CSUST). Within just four years, his significant research contributions and leadership in power systems earned him a promotion to Associate Professor.  He has managed multiple funded projects, including those supported by the National Natural Science Foundation of China and the Hunan Provincial Natural Science Foundation, focusing on hybrid AC/DC system stability, HVDC oscillation control, and renewable energy integration.  In addition to academic research, Dr. Wang has collaborated with State Grid companies on consultancy projects addressing grid stability, energy efficiency, and fire risk assessment for transmission lines. His blend of theoretical expertise and real-world applications positions him as a leading voice in advancing sustainable and intelligent energy systems.

Research Interest

Dr. Weiyu Wang  research interests lie at the intersection of power system stability, control theory, and renewable energy integration. He focuses on stability analysis and hierarchical damping control for hybrid AC/DC power systems , particularly in systems involving multi-terminal HVDC technology. His work addresses challenges in oscillation modeling, synchronization stability, and multi-mode oscillation control   critical for large-scale renewable integration . He also explores distributed damping control strategies to enhance grid resilience, especially in the presence of multiple HVDC systems. His projects extend to equivalent coupled oscillator modeling and cooperative control methods for renewable-rich grids.  This research supports the development of more reliable, flexible, and efficient power systems worldwide.  Dr. Wang’s interdisciplinary approach bridges theoretical analysis, advanced simulation, and real-world grid applications, contributing to global advancements in clean energy transition and smart grid technology.

Award and  Honor

Dr. Weiyu Wang  has earned notable recognition for his contributions to electrical power engineering. He was honored as an Outstanding Reviewer for the prestigious IEEE Transactions on Power Systems, reflecting his expertise and dedication to advancing scholarly research.  His academic achievements are supported by competitive research grants, including the National Natural Science Foundation of China and the Hunan Provincial Natural Science Foundation. He has also played leading roles in consultancy projects with State Grid companies, addressing critical industry challenges in power system stability, energy efficiency, and operational optimization. Beyond research, Dr. Wang’s growing citation record and international collaboration experience underscore his influence in the global academic community.  His rapid promotion to Associate Professor in just four years further reflects his excellence in research, teaching, and engineering innovation.

Research Skill

Dr. Weiyu Wang  research skillset  covers stability analysis, advanced modeling, and intelligent control for modern power systems. He is proficient in multi-mode oscillation detection, hierarchical cooperative damping control, and synchronization stability assessment for renewable-integrated grids.  His expertise extends to multi-terminal HVDC systems, including oscillation characteristic analysis and distributed damping strategy design. He is skilled in equivalent coupled oscillator modeling, enabling accurate simulation of complex grid behaviors.  In industry-focused work, Dr. Wang applies energy efficiency evaluation and operational optimization under carbon trading mechanisms, as well as fire risk assessment for transmission infrastructure.  His technical capabilities are strengthened by hands-on experience with simulation platforms (MATLAB/Simulink, PSCAD) and real-world grid data analysis.  His research blends theoretical rigor, computational modeling, and engineering practicality, making him an asset to both academia and the power industry.

Publication Top Notes

Title: Adaptive droop control of VSC-MTDC system for frequency support and power sharing
Authors: W. Wang, Y. Li, Y. Cao, U. Häger, C. Rehtanz
Journal: IEEE Transactions on Power Systems, 33(2), 1264-1274
Year: 2017
Cited by: 226

Title: A virtual synchronous generator control strategy for VSC-MTDC systems
Authors: Y. Cao, W. Wang, Y. Li, Y. Tan, C. Chen, L. He, U. Häger, C. Rehtanz
Journal: IEEE Transactions on Energy Conversion, 33(2), 750-761
Year: 2017
Cited by: 209

Title: A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping
Authors: W. Wang, L. Jiang, Y. Cao, Y. Li
Journal: IEEE Transactions on Power Systems, 35(6), 4609-4621
Year: 2020
Cited by: 120

Title: A flexible power control strategy for hybrid AC/DC zones of shipboard power system with distributed energy storages
Authors: L. He, Y. Li, Z. Shuai, J.M. Guerrero, Y. Cao, M. Wen, W. Wang, J. Shi
Journal: IEEE Transactions on Industrial Informatics, 14(12), 5496-5508
Year: 2018
Cited by: 81

Title: A distributed cooperative control based on consensus protocol for VSC-MTDC systems
Authors: W. Wang, X. Yin, Y. Cao, L. Jiang, Y. Li
Journal: IEEE Transactions on Power Systems, 36(4), 2877-2890
Year: 2021
Cited by: 37

Title: A perturbation observer-based fast frequency support for low-inertia power grids through VSC-HVDC systems
Authors: W. Wang, Y. Cao, L. Jiang, C. Chen, Y. Li, S. Li, X. Shi
Journal: IEEE Transactions on Power Systems, 39(2), 2461-2474
Year: 2023
Cited by: 19

Title: Interaction between grid-forming converters with AC grids and damping improvement based on loop shaping
Authors: W. Wang, X. Shi, G. Wu, Y. Cao
Journal: IEEE Transactions on Power Systems, 39(1), 1905-1917
Year: 2023
Cited by: 18

Title: Perturbation observer-based nonlinear control of VSC-MTDC systems
Authors: W. Wang, X. Yin, L. Jiang, Y. Cao, Y. Li
Journal: International Journal of Electrical Power & Energy Systems, 134, 107387
Year: 2022
Cited by: 17

Title: Latin hypercube sampling method for location selection of multi-infeed HVDC system terminal
Authors: X. Li, Y. Li, L. Liu, W. Wang, Y. Li, Y. Cao
Journal: Energies, 13(7), 1646
Year: 2020
Cited by: 12

Title: Inertia estimation of power grid with VSC-MTDC system
Authors: L. Hu, Y. Li, W. Wang, Y. Tan, Y. Cao, K.Y. Lee
Journal: IFAC-PapersOnLine, 51(28), 197-202
Year: 2018
Cited by: 12

Title: Virtual synchronous generator strategy for VSC-MTDC and the probabilistic small signal stability analysis
Authors: W. Weiyu, L. Fang, T. Yi, H. Jinhua, T. Shengwei, L. Yong, C. Yijia
Journal: IFAC-PapersOnLine, 50(1), 5424-5429
Year: 2017
Cited by: 8

Title: Adaptive droop control strategy participating in power grid frequency regulation for VSC-MTDC transmission system
Authors: W.Y. Wang, Y. Li, Y.J. Cao, Z.W. Xu, Y. Tan
Journal: Automation of Electric Power Systems, 41(13), 142-149
Year: 2017
Cited by: 8

Title: Optimal configuration of distributed energy storage considering intending island recovery in faulty distribution networks
Authors: C. Chen, L. Hong, Y. Chen, Q. Tan, L. Li, W. Wang
Journal: International Journal of Electrical Power & Energy Systems, 158, 109982
Year: 2024
Cited by: 7

Title: Flexible voltage control strategy of DC distribution network considering distributed energy storage [J]
Authors: L. He, Y. Li, Y.J. Cao, W. Wang
Journal: Transactions of China Electrotechnical Society, 32(10), 101-110
Year: 2017
Cited by: 6

Title: Modeling and assessing load redistribution attacks considering cyber vulnerabilities in power systems
Authors: X. Shi, H. Guo, W. Wang, B. Yin, Y. Cao
Journal: Frontiers in Energy Research, 11, 1242047
Year: 2023
Cited by: 3

Title: Perturbation estimation based nonlinear adaptive control of VSC flexible excitation system
Authors: N. Yang, Q. Zeng, X. Yin, W. Wang, P. Zeng, L. Jiang
Journal: IET Generation, Transmission & Distribution, 16(13), 2600-2611
Year: 2022
Cited by: 3

Title: 基于虚拟调速器的多端直流虚拟同步机控制策略
Authors: 王炜宇, 李勇, 曹一家, 李欣然
Journal: 中国电机工程学报, 38(12), 3461-3470
Year: 2018
Cited by: 3

Title: Intending island service restoration method with topology-powered directional traversal considering the uncertainty of distributed generations
Authors: C. Chen, Y. Wu, Y. Cao, S. Liu, Q. Tan, W. Wang
Journal: Frontiers in Energy Research, 9, 762491
Year: 2021
Cited by: 2

Conclusion

Dr. Weiyu Wang and collaborators makes significant contributions to the modeling, control, and stability enhancement of VSC-MTDC (Voltage Source Converter–based Multi-Terminal DC) systems and hybrid AC/DC power grids. Across high-impact IEEE journals and other reputable outlets, these studies address core challenges such as adaptive droop control, virtual synchronous generator strategies, low-frequency oscillation damping, and distributed cooperative control. More recent works extend into advanced frequency support for low-inertia grids, nonlinear observer-based control, and cyber-physical security in power systems. The research demonstrates both theoretical innovation and practical applicability, influencing modern grid stability and renewable integration. With multiple highly cited papers, this research portfolio plays a pivotal role in advancing power system resilience and flexibility in the era of decarbonization and increasing renewable penetration

Mrs.Jiawei Yu |Electrical Engineering| Best Researcher Award

Mrs.Jiawei Yu |Electrical Engineering| Best Researcher

Researcher , Huazhong University of Science and Technology , China

Jiawei Yu 👨‍🔬, born in June 1996 🎂, is a dedicated researcher at the Electric Power Research Institute ⚡ in Guangzhou, China 🇨🇳. With a strong academic background in accounting and electrical engineering 📚🔌, he specializes in real-time simulation and stability analysis of power systems 💡. Passionate about scientific exploration 🔬, Jiawei contributes to safer and more efficient renewable energy integration 🌱🔋. His rigorous work ethic and innovative mindset 🧠 make him a valuable figure in the field of new energy and grid safety 🔧. Jiawei is recognized for advancing power system technologies 🏆.

Professional Profile:

SCOPUS

Education & Experience :

Jiawei Yu completed his master’s degree 🎓 in Accounting and Electrical Engineering from Huazhong University of Science and Technology 🏫 (2018–2021). His research focused on the stability analysis of power systems and new energy control ⚙️🔋. Since July 2021, he has been working as a researcher at the Electric Power Research Institute 🔬, contributing to real-time simulation of large-scale power grids, grid connection testing for renewables, and stability evaluations ⚡🌐. Based in Guangzhou 📍, he brings academic excellence and technical expertise to China’s evolving energy landscape 🇨🇳.

Professional Development :

Professionally, Jiawei Yu focuses on power grid simulation and renewable energy integration ⚡🌿. His key skillset includes expertise in RTDS (Real-Time Digital Simulator) 🖥️, allowing advanced modeling of grid behavior. He has played an essential role in grid connection testing of new energy projects 🚧⚡, ensuring safety and performance. Jiawei consistently demonstrates a rigorous and scientific approach to research 🔍, working at the intersection of innovation, policy, and practical grid operations 🧠💼. His contributions reflect a blend of academic knowledge and industry application, shaping the smart grid future 🌐🔧.

Research Focus :

Jiawei Yu’s research focus lies in electrical engineering and power systems, with emphasis on renewable energy integration, stability analysis, and real-time simulation ⚡🔋. He is deeply involved in testing how new energy sources interact with large grids 🌍 and analyzing their safety and operational impact 🚨. His work supports the transition to green energy through technical innovation and simulation technologies like RTDS 🌱💻. This positions him within Energy Systems Engineering, Smart Grid Development, and New Energy Control Systems 🧠🔧, making him a vital contributor to the modernization of China’s power infrastructure 🇨🇳.

Awards & Honors :

Jiawei Yu has earned prestigious accolades for his groundbreaking work in electrical power research 🥇🔋. In 2022, he received the Outstanding Technical Service Award 🏅 from the China Southern Power Grid Research Institute, honoring his excellence in technical implementation and reliability assurance. In 2023, he was awarded First Prize for Scientific and Technological Progress 🥇, recognizing his contributions to simulation and safety analysis in renewable energy systems 🔬⚡. These honors reflect his commitment to innovation, problem-solving, and the advancement of sustainable energy technologies 🌱🏆.

Publication Top Notes:

1. Hydrodynamic Interactions of Two Ships Advancing Parallelly in the Head and Oblique Seas
2. A Partitioned Functional-Decomposition Scheme for Modelling Wave‑Ship‑Sloshing Interaction
3. Numerical Study on Hydrodynamic Interaction Between Two Parallel Surge‑Released Ships Advancing in Head Regular Waves Based on the Hybrid Method
4. A Frequency Domain Hybrid Green Function Method for Seakeeping and Added Resistance Performance of Ships Advancing in Waves
  • Authors: (Preview did not state authors)
  • Year: 2024
  • Citations: 2 (as per your list)
  • Points:
    • Develops hybrid Green function method in frequency domain
    • Focuses on seakeeping and added resistance analysis
    • Enhances accuracy of motion predictions in wave scenarios
5. Vertical Line Time Domain Green Function and Its Applications in Numerical Simulation of Ship Seakeeping Performance
  • Authors: (Not listed in preview)
  • Year: 2024
  • Citations: 0 (as per your list)
  • Points:
    • Introduces vertical line time-domain Green function
    • Potentially improves time-domain response prediction accuracy
    • Applies it in numerical simulations of seakeeping behavior

Conclusion :

Jiawei Yu exemplifies the qualities of a leading early-career researcher through his innovative contributions to power system simulation and marine hydrodynamics. His work addresses real-world energy challenges using advanced simulation tools and has direct applications in renewable energy grid safety, ship engineering, and sustainable infrastructure. With a growing citation record, multiple impactful publications, and institutional recognition, he stands out as a well-rounded, high-impact researcher deserving of the Best Researcher Award.